Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 922: 171223, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38417514

RESUMO

The present study reports data on a long-term campaign for monitoring SARS-CoV-2, norovirus, hepatitis A virus, and beta-lactam resistance genes in wastewater samples from a wastewater treatment plant during COVID-19 surge in Suwon, South Korea. Real-time digital PCR (RT-dPCR) assays indicated 100 % occurrence of all but hepatitis A virus and blaNDM gene in influent wastewater samples. CDC-N1 assay detected SARS-CoV-2 in all influent samples with an average log-transformed concentration of 5.1 ± 0.39 and the highest level at 6.02 gene copies/L. All samples were also positive for norovirus throughout the study with a mean concentration 5.67 ± 0.65 log10 gene copies/L. On the contrary, all treated wastewater (effluent) tested negative for both viruses' genetic materials. Furthermore, plasmid-mediated AmpC ß-lactamases (PABLs) genes blaDHA, blaACC, and blaFOX, extended-spectrum ß-lactamases (ESBLs) genes blaTEM and blaCTX, and Klebsiella pneumoniae carbapenemase (blaKPC) gene were measured at average concentrations of 7.05 ± 0.26, 5.60 ± 0.35, 7.82 ± 0.43, 8.38 ± 0.20, 7.64 ± 0.29, and 7.62 ± 0.41 log10 gene copies/L wastewater, respectively. Beta-lactam resistance genes showed strong correlations (r), the highest being 0.86 for blaKPC - blaFOX, followed by 0.82 for blaTEM - blaCTX and 0.79 for blaTEM - blaDHA. SARS-CoV-2 RNA occurrence in the wastewater was strongly associated (r = 0.796) with COVID-19 cases in the catchment during the initial study period of six months. A positive association of the SARS-CoV-2 RNA with the prevalence of COVID-19 cases showed a promising role of community-scale monitoring of pathogens to provide considerable early signals of infection dynamics. High concentrations of beta-lactam resistance genes in wastewater indicated a high concern for one of the biggest global health threats in South Korea and the need to find control measures. Moreover, antibiotic-resistance genes in treated wastewater flowing through water bodies and agricultural environments indicate further dissemination of antibiotic resistance traits and increasing microbial antibiotic resistance.


Assuntos
COVID-19 , Águas Residuárias , Humanos , COVID-19/epidemiologia , Vigilância Epidemiológica Baseada em Águas Residuárias , RNA Viral , SARS-CoV-2/genética , beta-Lactamases/genética , Antibacterianos/farmacologia , Resistência beta-Lactâmica
2.
Chemosphere ; 352: 141403, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368967

RESUMO

High concentrations of metals and sulfates in acid mine drainage (AMD) are the cause of the severe environmental hazard that mining operations pose to the surrounding ecosystem. Little study has been conducted on the cost-effective biological process for treating high AMD. The current research investigated the potential of the proposed carbon source and sulfate reduction bacteria (SRB) culture in achieving the bioremediation of sulfate and heavy metals. This work uses individual and combinatorial bioaugmentation and bio-stimulation methods to bioremediate acid-mine-influenced groundwater in batch microcosm experiments. Bioaugmentation and bio-stimulation methods included pure culture SRB (Desulfovibrio vulgaris) and microsized oil droplet (MOD) by emulsifying corn oil. The research tested natural attenuation (T 1), bioaugmentation (T2), biostimulation (T3), and bioaugmentation plus biostimulation (T4) for AM-contaminated groundwater remediation. Bioaugmentation and bio-stimulation showed the greatest sulfate reduction (75.3%) and metal removal (95-99%). Due to carbon supply scarcity, T1 and T2 demonstrated 15.7% and 27.8% sulfate reduction activities. Acetate concentrations in T3 and T4 increased bacterial activity by providing carbon sources. Metal bio-precipitation was substantially linked with sulfate reduction and cell growth. SEM-EDS study of precipitates in T3 and T4 microcosm spectra indicated peaks for S, Cd, Mn, Cu, Zn, and Fe, indicating metal-sulfide association for metal removal precipitates. The MOD provided a constant carbon source for indigenous bacteria, while Desulfovibrio vulgaris increased biogenic sulfide synthesis for heavy metal removal.


Assuntos
Desulfovibrio vulgaris , Desulfovibrio , Metais Pesados , Biodegradação Ambiental , Óleo de Milho , Zea mays , Ecossistema , Bactérias , Ácidos , Sulfatos , Carbono , Sulfetos
3.
J Environ Chem Eng ; 11(3): 110289, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37292384

RESUMO

With the global COVID-19 pandemic, wastewater surveillance has received a considerable attention as a method for the early identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater treatment plant (WWTP) and sewer systems. For the first time in Korea, this study utilized the wastewater surveillance technique to monitor the COVID-19 outbreak. Sampling efforts were carried out at the WWTPs in the capital city of Korea, Seoul, and Daegu the place where the first severe outbreak was reported. The RNA of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been extracted from the collected wastewater influent and primary sewage sludge samples. The outcomes were contrasted with the COVID-19 cases in the WWTPs served area. Additionally, whole transcriptome sequencing was used to compare the microbial community alterations before and after the COVID-19 outbreak and SARS-CoV-2 variations. The results demonstrated that the changes in SARS-CoV-2 RNA concentrations in the influent and sludge matched the trends of reported COVID-19 cases, especially sludge showed high-resolution data, which is well-matched when fewer COVID-19 cases (0-250) are reported. Interestingly, one month before the clinical report, we found that the SARS-CoV-2 Beta variant (South Africa, B.1.351) in the wastewater. In addition, the Aeromonas bacterial species was dominated (21.2%) among other bacterial species in wastewater after the COVID-19 outbreak, suggesting a potential indirect microbial indicator of the COVID-19 outbreak.

4.
Environ Pollut ; 312: 120086, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36064062

RESUMO

Ecological risk assessment of contaminated sediment has become a fundamental component of water quality management programs, supporting decision-making for management actions or prompting additional investigations. In this study, we proposed a machine learning (ML)-based approach to assess the ecological risk of contaminated sediment as an alternative to existing index-based methods and costly toxicity testing. The performance of three widely used index-based methods (the pollution load index, potential ecological risk index, and mean probable effect concentration) and three ML algorithms (random forest, support vector machine, and extreme gradient boosting [XGB]) were compared in their prediction of sediment toxicity using 327 nationwide data sets from Korea consisting of 14 sediment quality parameters and sediment toxicity testing data. We also compared the performances of classifiers and regressors in predicting the toxicity for each of RF, SVM, and XGB algorithms. For all algorithms, the classifiers poorly classified toxic and non-toxic samples due to limited information on the sediment composition and the small training dataset. The regressors with a given classification threshold provided better classification, with the XGB regressor outperforming the other models in the classification. A permutation feature importance analysis revealed that Cr, Cu, Pb, and Zn were major contributors to toxicity prediction. The ML-based approach has the potential to be even more useful in the future with the expected increase in available sediment data.


Assuntos
Metais Pesados , Poluentes Químicos da Água , China , Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Chumbo/análise , Aprendizado de Máquina , Metais Pesados/análise , Medição de Risco , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
5.
J Environ Manage ; 320: 115806, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35926387

RESUMO

Wastewater-based epidemiology (WBE) is drawing increasing attention as a promising tool for an early warning of emerging infectious diseases such as COVID-19. This study demonstrated the utility of a spatial bisection method (SBM) and a global optimization algorithm (i.e., genetic algorithm, GA), to support better designing and operating a WBE program for disease surveillance and source identification. The performances of SBM and GA were compared in determining the optimal locations of sewer monitoring manholes to minimize the difference among the effective spatial monitoring scales of the selected manholes. While GA was more flexible in determining the spatial resolution of the monitoring areas, SBM allows stepwise selection of optimal sampling manholes with equiareal subcatchments and lowers computational cost. Upon detecting disease outbreaks at a regular sewer monitoring site, additional manholes within the catchment can be selected and monitored to identify source areas with a required spatial resolution. SBM offered an efficient method for rapidly searching for the optimal locations of additional sampling manholes to identify the source areas. This study provides strategic and technical elements of WBE including sampling site selection with required spatial resolution and a source identification method.


Assuntos
COVID-19 , Águas Residuárias , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , Águas Residuárias/análise , Vigilância Epidemiológica Baseada em Águas Residuárias
6.
Environ Res ; 212(Pt C): 113439, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35537496

RESUMO

This study investigated seasonal trends in bioaccumulation potential and toxic effects of mercury (Hg) in Asian clams (Corbicula fluminea) and microbial community. For this, a clam-exposure experiment was performed during summer, fall, and winter seasons in four different sites (HS1: control/clean site; HS2, HS3, and HS4: contaminated sites) of Hyeongsan River estuary, South Korea. Total mercury (THg) and methylmercury (MeHg) in whole sediments were highest at HS4 site during fall, sustained similar levels during winter, but decreased during summer. Unlike whole sediment, pore water reported higher levels in summer, and gradually declined during fall and winter. Asian clams from HS4 site collected during summer presented highest bioaccumulations of THg (521.52 µg/kg, dry weight) and MeHg (161.04 µg/kg, dry weight), which also correlated with the higher levels of Hg present in pore water in the same season. Moreover, biota-sediment-pore water accumulation factor (BSpAF) were comparatively greater in clams collected from HS2∼HS4 compared to HS1 sites, suggesting that porewater was a better indicator of accumulation of Hg. Upregulation of biomarker genes responsible for detoxifying process (gsts1), scavenging oxidative stress (cat), and protein reparation (hsp70 and hsp90) were observed in clams collected from HS2∼HS4. The overexpression of these biomarkers implied that Asian clams can be considered as promising warning tools for Hg-contamination. Both bacterial and metabolic diversities were negatively affected by higher levels of THg and MeHg. Phylum Proteobacteria was enriched in HS2∼HS4 compared to HS1. In contrast, phylum Bacteroidetes showed a reverse trend. The metabolic profile was highest in HS1 and lowest in HS4, revealing higher stress of Hg in HS4 site. Overall, the outcomes of this field study broaden the information on seasonal trends of bioaccumulation of Hg and its toxic effects. These findings may be helpful in Hg monitoring and management programs in other river systems.


Assuntos
Corbicula , Mercúrio , Compostos de Metilmercúrio , Microbiota , Poluentes Químicos da Água , Animais , Bioacumulação , Corbicula/metabolismo , Monitoramento Ambiental , Sedimentos Geológicos , Mercúrio/análise , Compostos de Metilmercúrio/toxicidade , Estações do Ano , Água , Poluentes Químicos da Água/análise
7.
J Environ Manage ; 302(Pt B): 114072, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34781050

RESUMO

Hydrogen peroxide (H2O2) is applied in various environments. It could be present at concentrations ranging from nanomolar to micromolar in a water system. It is produced through pollutants and natural activities. Since few studies have been conducted about the impact of naturally produced H2O2 on aquatic organisms, the objective of the present study was to monitor changes in responses of aquatic model organisms such as zebrafish and antibiotic-resistant bacteria to different exogenous H2O2 exposure. Increases in exposure concentration and time induced decreases in the perception of zebrafish larvae (up to 69%) and movement of adult zebrafish (average speed, average acceleration, movement distance, and activity time) compared to the control (non-exposed group). In addition, as a function of H2O2 exposure concentration (0-100,000 nM) and time, up to 20-fold increase (p = 5.00*10-6) of lipid peroxidation compared to control was observed. For microorganisms, biofilm, an indirect indicator of resistance to external stressors, was increased up to 68% and gene transfer was increased (p = 2.00*10-6) by more than 30% after H2O2 exposure. These results imply that naturally generated H2O2 could adversely affect aquatic environment organisms and public health. Thus, more careful attention is needed for H2O2 production in an aquatic system.


Assuntos
Peróxido de Hidrogênio , Poluentes Químicos da Água , Animais , Antibacterianos/toxicidade , Bactérias/genética , Peróxido de Hidrogênio/toxicidade , Larva , Poluentes Químicos da Água/análise , Peixe-Zebra
8.
Chemosphere ; 291(Pt 1): 132700, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34710454

RESUMO

Activated carbon (AC) amendment is considered as one of the alternatives for managing and remediating mercury (Hg) contaminated sediments because of its high sorptive capacity and potential to immobilize the contaminant. For this study, the underlying mechanisms that control the reduction of Hg bioavailability in AC-amended estuarine sediments were investigated in box microcosm set-ups with 28-day Asian clam bioassay experiments. The application of diffusive gradients in thin film technique (DGT) revealed that the total mercury and methylmercury levels in sediment pore water decreased by 60%-75% in 1%-3% AC-amended sediments. This decrease subsequently led to a linear reduction in the Hg body burden in Asian clams, even at 1% sorbent mixing. These observations implied that AC amendment reduced the net flux of Hg into the pore water and overlying water, resulting in reduced Hg bioaccumulation in benthic organisms. The addition of AC to sediment also led to reduced dissolved organic carbon and several biogeochemical indicators (HS-, Mn, and Fe) in the pore water. Furthermore, the 16 S rRNA gene amplicon sequencing analysis revealed noticeable alterations in the microbial communities after AC amendment. The predominant phylum was Firmicutes in control sediment, Bacteroidetes in 1% AC-amended sediment, and Proteobacteria in both 2% and 3% AC-amended sediment samples. The genera-level analysis showed that the relative abundance of the Hg-methylators decreased as the level of AC amendment increased. These observations suggested that AC amendment decreased Hg bioavailability not only by physicochemical sorption but also by changing geochemical species and shifting the microbial community composition.


Assuntos
Corbicula , Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Disponibilidade Biológica , Carvão Vegetal , Matéria Orgânica Dissolvida , Sedimentos Geológicos , Mercúrio/análise , Poluentes Químicos da Água/análise
9.
J Environ Manage ; 298: 113515, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34403920

RESUMO

In water, hydrogen peroxide (H2O2) is produced through abiotic and biotic reactions with organic matter, including algal cells. The production of H2O2 is influenced by harmful algal cell communities and toxicity. However, only a few studies have been conducted on H2O2 concentrations in natural water. Particularly, the seasonal and temporal patterns of H2O2 concentration suggest that H2O2 generation from aquatic microorganisms could be identified to compare of photochemical production from dissolved organic matter. Study area is a source of raw water and is a large artificial lake located near a metropolitan city. Due to various environmental conditions, harmful algal blooms frequently occur in summer. The purpose of this study was to trace the H2O2 concentration and water quality parameters of study area where algal bloom occurs and what factors directly affect the H2O2 concentration. Experiments were performed on the influencing factors via water samples from study area and lab-scale culture tank. The lake produces an average of 553 nM H2O2, which increases by more than three times (1460 nM) in summer compared the winter. The lake (18.6-23.8 nMh-1) produced more H2O2 than streams (7.4-9.0 nMh-1) during daylight hours. All water sites presented the lowest production rates in dark conditions (1.1-1.5 nMh-1). Daytime environment increased the generation rate more than the nighttime. The trend of H2O2 produced by algal cells was similar to that of the growth of algal cells. The exposure to external substances (heavy metals and antibiotics) increased the incidence by approximately five times; antibiotics were more influential than heavy metals.


Assuntos
Cianobactérias , Peróxido de Hidrogênio , Proliferação Nociva de Algas , Lagos , Estações do Ano
10.
Water Sci Technol ; 83(3): 652-663, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33600369

RESUMO

This paper reports long-term performance of a two-stage AMX® system with a capacity of 70 m3/d treating actual reject water. An air-lift granulation reactor performed partial nitritation (PN-AGR) at an average nitrogen loading rate (NLR) of 3.1 kgN/m3-d, producing an average effluent NO2--N/NH4+-N ratio of 1.04. The average nitrogen removal rate of the system was 3.91 kgN/m3-d following an anaerobic ammonium oxidation (Anammox) stage moving bed biofilm reactor (A-MBBR). Although the total nitrogen concentrations in the reject water fluctuated seasonally, overall nitrogen removal efficiency (NRE) of the two-stage AMX® system was very stable at over 87%. The two-stage AMX® system, consisting of a PN-AGR followed by an A-MBBR, operated at a stable NLR of 1.86 kgN/m3-d (1.64 kgN/m3-d including the intermediate tank), which is 1.8 times higher (1.6 times including the intermediate tank) than other commercialized single-stage partial nitritation/Anammox (PN/A) processes (which operate at a NLR of about 1 kgN/m3-d). The PN-AGR was affected by high influent total suspended solids (TSS) loads, but was able to recover within a short period of 4 days, which confirmed that the two-stage PN/A process is resilient to TSS load fluctuations.


Assuntos
Compostos de Amônio , Nitrogênio , Biofilmes , Reatores Biológicos , Desnitrificação , Oxirredução , Águas Residuárias , Água
11.
J Hazard Mater ; 402: 123480, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32712358

RESUMO

A proof-of-concept study evaluates the performance of a novel strategy using photosynthetic microorganisms to soften groundwater instead of using caustic chemicals. The microalga Scenedesmus quadricauda was used to increase the pH of the groundwater via natural photosynthesis. This work applied softening as a pretreatment to ozonation of hard groundwater and mainly focused on investigating the multiple effects of algal softening on the degradation of persistent micropollutants upon subsequent ozonation. The algae-induced alkaline conditions (pH > 10) were favorable to catalyze the formation of OH radicals directly from O3 molecules. Moreover, algal softening removed the strong radical-scavenging carbonate species (HCO3- and CO32-) to a much greater extent than that achieved by chemical softening, which was attributed to the combination of mineral carbonation and metabolic CO2 reduction. The fate of the natural organic matter (NOM) was characterized with spectroscopy, chromatography, and bioassay, which indicates that algal treatment decomposed the NOM to be less susceptible to attack by OH radicals. Consequently, the ozonation of alkaline groundwater achieved a better removal of the micropollutant residues in groundwater. Carbamazepine and diclofenac were used as model chemicals of persistent groundwater contaminants and were almost completely removed with an addition of 1.25 mg O3 L-1 (0.63 mg-O3 mg-C-1).


Assuntos
Água Subterrânea , Ozônio , Poluentes Químicos da Água , Purificação da Água , Catálise , Poluentes Químicos da Água/análise
12.
J Hazard Mater ; 409: 124530, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33243649

RESUMO

This study investigated the effect of powdered activated carbon and calcium on trihalomethane toxicity in zebrafish embryos and larvae in hybrid membrane bioreactors. Two hybrid membrane bioreactors were configured with the addition of powdered activated carbon or calcium to reduce the trihalomethane formation potential. Trihalomethane formation decreased by approximately 37.2% and 30.3% in membrane bioreactor-powdered activated carbon and membrane bioreactor-calcium, respectively. Additionally, the toxic effect of trihalomethane formation was examined on zebrafish embryos and larvae. About 35% of the embryos exposed to trihalomethanes (800 ppb) showed signs of deformation, with the majority displaying coagulation within 24 h after exposure. Color preference tests, which were conducted to identify any abnormal activities of the embryos, showed an increase in preference from short to longer wavelengths upon exposure to high levels of trihalomethanes. This may indicate damage to the optical organs in zebrafish when exposed to trihalomethanes. Behavioral analysis showed reduced mobility of zebrafish larvae under different trihalomethane concentrations, indicating a decrease in the average activity time with an increasing trihalomethane concentration. The membrane bioreactor effluents were toxic to zebrafish embryos and larvae in the presence of high trihalomethane concentrations. To understand the mechanism behind trihalomethane toxicity, further studies are needed.


Assuntos
Carvão Vegetal , Trialometanos , Animais , Reatores Biológicos , Cálcio , Carvão Vegetal/toxicidade , Larva , Pós , Trialometanos/análise , Trialometanos/toxicidade , Peixe-Zebra
13.
Water Res ; 165: 115025, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31472335

RESUMO

To minimize the aesthetic and hygienic concerns regarding tap water (e.g., odor, taste, suspended solids, and microorganisms), point-of-use (POU) water dispensers and filters are used in households worldwide. However, the POU water dispenser itself can adversely impact water quality. This study investigated the bacterial growth through a POU water dispenser fed with chlorinated tap water; specifically, the heterotrophic plate count increased from 0.01 to 20.01 × 103 of colony-forming units per ml. The BioMig test, which evaluates the biostability of polymeric materials based on the migration potential and the biofilm formation potential, was firstly applied for the water dispenser system. Organic migration and biofilm formation varied by the polymer type used in the water dispenser components (e.g., tubing, fittings, and reservoir). Assimilable organic carbon migration in cold water (23 ±â€¯2 °C) was better correlated with the biofilm formation potential (R = 0.93) than that of warm water (60 ±â€¯2 °C) migration (R = 0.62). The most problematic test material was silicone based on assimilable organic carbon migration and biofilm formation, whereas approved materials such as polyethylene and polyvinyl chloride were relatively stable. Polymeric component examination of an actual POU water dispenser revealed highly accumulated biofilms on the silicone tube used in the device (118 × 103 CFU cm-2). The use of polymers with high biofilm formation should be minimized in water dispensers, whereas approved polymeric components contribute to biological stability in the dispensed drinking water.


Assuntos
Água Potável , Purificação da Água , Biofilmes , Biomassa , Polímeros , Microbiologia da Água , Abastecimento de Água
14.
Water Res ; 159: 164-175, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31091481

RESUMO

Algal treatment was combined with ozone pretreatment for treatment of synthetic reverse osmosis concentrate (ROC) prior to microfiltration. The research mainly focused on minimizing the fouling of polyvinylidene-fluoride membranes and maximizing the restoration of membrane permeability. The algal treatment alone was only moderately effective for the mitigation of fouling in microfiltration, while a markedly improved performance was achieved when the algal treatment followed ozonation. The combination of ozonation and algal treatment reduced membrane permeability decline and significantly (p < 0.05) increased the reversibility of fouling after hydraulic washing. A longitudinal evaluation was also performed with a goal of achieving a robust removal of contaminants. Ozonation followed by algal treatment was very effective in attenuating both caffeine and carbamazepine, as well as removing organic matter and inorganic nutrients from ROC in a single bioreactor. In this study, an alkaline condition (∼pH 12), produced by microalgae in the light without supplemental aeration was applied for in-situ cleaning of fouled membranes. The result showed that the algal-induced cleaning successfully restored the permeability of organic-fouled membranes during the filtration of both raw and algal-treated ROC. This in-situ strategy offers a novel option for periodic cleaning of fouled membranes while maintaining operational simplicity, especially for existing submerged membrane filtration facilities.


Assuntos
Ozônio , Purificação da Água , Filtração , Membranas Artificiais , Osmose
15.
J Hazard Mater ; 376: 112-124, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31128390

RESUMO

The purpose of this study was to determine whether behavioral tests and metabolic profiling of organisms can be promising alternatives for assessing the health of aquatic systems. Water samples from four potential pollution sources in South Korea were collected for toxicity evaluation. First, conventional acute toxicity test in Daphnia magna and behavioral test in zebrafish was conducted to assess water quality. Second, metabolomic analysis was performed on zebrafish exposed to water samples and on environmental fish collected from the same source. Acute toxicity test in D. magna showed that none of the water samples exerted significant adverse effects. However, activity of zebrafish larvae exposed to samples from the zinc smelter (ZS) and industrial complex (IND) sites decreased compared to those exposed to samples from the reference site (RS). Metabolomic analysis using the Manhattan plot and Partial Least Square (PLS)/Orthogonal PLS Discriminant Analysis (OPLS-DA) showed differences in metabolic profiles between RS and ZS, and between IND and abandoned mine site (M). Interestingly, applying the same metabolomic analysis to environmental fish revealed patterns similar to those for zebrafish, despite the uncontrollable variables involved in environmental sampling. This study shows that metabolomics is a promising tool in assessing the health of aquatic environments.


Assuntos
Daphnia/efeitos dos fármacos , Monitoramento Ambiental/métodos , Larva/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Daphnia/metabolismo , Larva/metabolismo , República da Coreia , Rios/química
16.
Environ Sci (Camb) ; 5: 1489-1498, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32607247

RESUMO

This article describes a proof-of-concept study designed for the reuse of wastewater using microbial electrochemical cells (MECs) combined with complementary post-treatment technologies. This study mainly focused on how the integrated approach works effectively for wastewater reuse. In this study, microalgae and ultraviolet C (UVC) light were used for advanced wastewater treatment to achieve site-specific treatment goals such as agricultural reuse and aquifer recharge. The bio-electrosynthesis of H2O2 in MECs was carried out based on a novel concept to integrate with UVC, especially for roust removal of trace organic compounds (TOrCs) resistant to biodegradation, and the algal treatment was configured for nutrient removal from MEC effluent. UVC irradiation has also proven to be an effective disinfectant for bacteria, protozoa, and viruses in water. The average energy consumption rate for MECs fed acetate-based synthetic wastewater was 0.28±0.01 kWh per kg of H2O2, which was significantly more efficient than are conventional electrochemical processes. MECs achieved 89±2% removal of carbonaceous organic matter (measured as chemical oxygen demand) in the wastewater (anolyte) and concurrent production of H2O2 up to 222±11 mg L-1 in the tapwater (catholyte). The nutrients (N and P) remaining after MECs were successfully removed by subsequent phycoremediation with microalgae when aerated (5% CO2, v/v) in the light. This complied with discharge permits that limit N to 20 mg L-1 and P to 0.5 mg L-1 in the effluent. H2O2 produced on site was used to mediate photolytic oxidation with UVC light for degradation of recalcitrant TOrCs in the algal-treated wastewater. Carbamazepine was used as a model compound and was almost completely removed with an added 10 mg L-1 of H2O2 at a UVC dose of 1000 mJ cm-2. These results should not be generalized, but critically discussed, because of the limitations of using synthetic wastewater.

17.
Bioresour Technol ; 275: 314-320, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30594842

RESUMO

This study presents the effects of nanoscale zero valent iron (nZVI) concentration on the biomethanation of gaseous CO2. During anaerobic batch experiment with 9 times injection of CO2, the CO2 concentration in the headspace rapidly decreased by dissolution. Then, when nZVI was added at 6.25 and 12.5 g/L, the dissolved CO2 was biochemically transformed into CH4 at a maximum production rate of 2.38 and 3.93 µmol/hr, respectively. Biomethanation at these two nZVI concentrations continued until the end of experiment. In spite of more H2 evolution by nZVI at 25 g/L, biomethanation did not occur, due to the significant inhibition of methanogenesis by nZVI. As the nZVI concentration increased, relative abundance of the hydrogenotrophic methanogens, especially Methanobacteriales, increased. However, at 25 g/L of nZVI concentration, acetic acid was accumulated and the relative abundance of Clostridium became predominant, indicating that homoacetogenesis was superior over methanogenesis.


Assuntos
Fenômenos Bioquímicos , Dióxido de Carbono/química , Ferro/química , Metano/química , Ácido Acético/metabolismo , Dióxido de Carbono/metabolismo , Euryarchaeota/metabolismo , Gases/química , Metano/metabolismo
18.
J Environ Sci (China) ; 76: 388-402, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30528031

RESUMO

We examined how long-term operation of anaerobic-oxic and anaerobic-anoxic sequencing batch reactors (SBRs) affects the enhanced biological phosphorus removal (EBPR) performance and sludge characteristics. The microbial characteristics of phosphorus accumulating organism (PAO) and denitrifying PAO (DPAO) sludge were also analyzed through a quantitative analysis of microbial community structure. Compared with the initial stage of operation characterized by unstable EBPR, both PAO and DPAO SBR produced a stable EBPR performance after about 100-day operation. From day 200 days (DPAO SBR) and 250 days (PAO SBR) onward, sludge granulation was observed, and the average granule size of DPAO SBR was approximately 5 times larger than that of PAO SBR. The DPAO granular sludge contained mainly rod-type microbes, whereas the PAO granular sludge contained coccus-type microbes. Fluorescence in situ hybridization analysis revealed that a high ratio of Accumulibacter clade I was found only in DPAO SBR, revealing the important role of this organism in the denitrifying EBPR system. A pyrosequencing analysis showed that Accumulibacter phosphatis was present in PAO sludge at a high proportion of 6%, whereas it rarely observed in DPAO sludge. Dechloromonas was observed in both PAO sludge (3.3%) and DPAO sludge (3.2%), confirming that this organism can use both O2 and NO3- as electron acceptors. Further, Thauera spp. was identified to have a new possibility as denitrifier capable of phosphorous uptake under anoxic condition.


Assuntos
Desnitrificação , Fósforo/metabolismo , Esgotos/microbiologia , Reatores Biológicos/microbiologia
19.
J Environ Qual ; 47(5): 1079-1085, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30272794

RESUMO

The fate of antibiotic resistance genes (ARGs) in aquatic environments, especially in rivers and reservoirs, is receiving growing attention in South Korea because reservoirs are an important source of drinking water in this country. Seasonal changes in the abundance of 11 ARGs and a mobile genetic element () in two reservoirs in South Korea, located near drinking water treatment plants in Cheonan and Cheongju cities, were monitored for 6 mo. In these drinking water sources, total ARG concentrations reached 2.5 × 10 copies mL, which is one order of magnitude higher than in influents of some wastewater treatment plants in South Korea. During the sampling periods in August, October, and November 2016 and January 2017, sulfonamides (), ß-lactam antibiotics (), and tetracycline () resistance genes were the most abundant genes at the two sites. The ARG abundance consistently increased in January relative to 16S ribosomal ribonucleic acid (rRNA) counts. General stress responses to oxidative stress and other environmental factors associated with the cold season could be significant drivers of ARG horizontal gene transfer in the environment. Accordingly, removal of ARGs as a key step in water treatment warrants more attention.


Assuntos
Antibacterianos , Rios , Cidades , Resistência Microbiana a Medicamentos , Genes Bacterianos , República da Coreia , Estações do Ano , Águas Residuárias
20.
Sci Total Environ ; 605-606: 906-914, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28686994

RESUMO

In this study, quantitative and qualitative changes in antibiotics resistance genes (ARGs) were investigated in two municipal wastewater treatment plants (WWTPs) treating pretreated livestock or industrial wastewater as well as municipal sewage. Total eight ARGs (tetX, tetM, tetA, sul1, sul2, ermB, qnrD, and blaTEM) were quantified, and their relative abundance was assessed by ARGs copies/16S rRNA gene copies. The fate of ARGs was observed to be different between two WWTPs: sul, qnrD, and blaTEM were proliferated during the treatment processes only in the WWTP1 which received pretreated livestock wastewater. Furthermore, dynamic shifts in patterns of ARGs occurrence were observed during biological, secondary sedimentation and coagulation processes. During biological treatment in both WWTPs, relative abundance of tet and ermB changed: tet increased significantly by 211.6-357.6%, while ermB decreased by 70.4-92.0%. Little variation was observed in sul, qnrD and blaTEM. Subsequently, the relative abundance of tet decreased during the secondary sedimentation and coagulation in both WWTPs: tet decreased by 56.0-86.3% during sedimentation and by 48.2-75.7% during coagulation, respectively. During the final treatment, different responses of antibiotic resistance bacteria (ARB) and ARGs to ultraviolet (UV) disinfection were found: removal efficiencies of ARB were observed in the range of 34-75%, while obvious reduction in ARGs was not observed at the UV dose of 27mJ/cm2. Although ARGs underwent various treatment processes, considerable levels of ARGs remained at discharge amounting to 4.2×1018 copies/day from WWTP1 and 5.4×1016 copies/day from WWTP2, respectively.


Assuntos
Farmacorresistência Bacteriana/genética , Genes Bacterianos , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Antibacterianos , Bactérias/efeitos dos fármacos , RNA Ribossômico 16S/genética , Esgotos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...